1-2 Skills Practice

Properties of Real Numbers

Name the sets of numbers to which each number belongs.

4.
$$\frac{12}{3}$$
 N, W, Z, Q, R

5.
$$-\sqrt{9}$$
 Z, Q, R

6.
$$\sqrt{30}$$
 I, R

Name the property illustrated by each equation.

7.
$$3 \cdot x = x \cdot 3$$

Comm. (x)

9.
$$2(r+w) = 2r + 2w$$

Distributive

11.
$$5y\left(\frac{1}{5y}\right) = 1$$

Mult. Inv.

13.
$$0.6[25(0.5)] = [0.6(25)]0.5$$

Assoc. (x)

8.
$$3a + 0 = 3a$$

Add. Iden.

10.
$$2r + (3r + 4r) = (2r + 3r) + 4r$$

Assoc. (+)

12.
$$15x(1) = 15x$$

Mult. Iden.

14.
$$(10b + 12b) + 7b = (12b + 10b) + 7b$$

Comm. (+)

Find the additive inverse and multiplicative inverse for each number.

15. 15
$$-15, \frac{1}{15}$$

17.
$$-\frac{4}{5}$$
 $\frac{4}{5}$, $\frac{5}{4}$

18.
$$3\frac{3}{4}$$
 $-3\frac{3}{4}$, $\frac{4}{15}$

Simplify each expression.

19.
$$3x + 5y + 2x - 3y$$
 5 $x + 2y$

$$3x + 3y + 2x + 3y + 2y$$

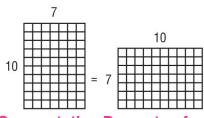
21.
$$-(3g+3h)+5g-10h$$
 2g – 13h

23.
$$3(m-z) + 5(2m-z)$$
 13 $m-8z$

25. 6(2w + v) - 4(2v + 1w) **8w - 2v**

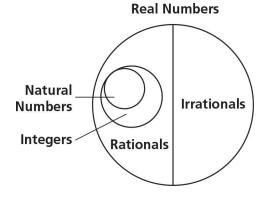
20.
$$x - y - z + y - x + z$$
 0

22.
$$a^2 - a + 4a - 3a^2 + 1$$
 -2 $a^2 + 3a + 1$


24.
$$2x - 3y - (5x - 3y - 2z)$$
 -3x + 2z

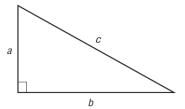
26.
$$\frac{1}{3}(15d+3c) - \frac{1}{2}(8c-10d)$$
 10d – 3c

1-2 Word Problem Practice


Properties of Real Numbers

- **1. MENTAL MATH** There are more than 3 million elementary teachers in the U.S. When teaching their students to multiply and learn place value. teachers often show that $54 \times 8 = (50 + 4) \times 8 =$ $(50 \times 8) + (4 \times 8)$. What property is used? **Distributive Property**
- **2. MODELS** What property of real numbers is illustrated by the figure below?

Commutative Property of Multiplication


3. VENN DIAGRAMS Make a Venn diagram that shows the relationship between natural numbers, integers, rational numbers, irrational numbers, and real numbers.

- **4. NUMBER THEORY** Consider the following two statements.
 - I. The product of any two rational numbers is always another rational number.
 - II. The product of two irrational numbers is always irrational. Determine if these statements are always, sometimes, or never true. Explain.

I. always II. sometimes,
$$\sqrt{2} \cdot \sqrt{2} = 2$$

5. RIGHT TRIANGLES The lengths of the sides of the right triangle shown are related by the formula $c^2 = a^2 + b^2$

For each set of values for a and b, determine the value of c. State whether c is a natural number.

a.
$$a = 5$$
, $b = 12$ **c = 13**; it is a natural number.

b.
$$a = 7$$
, $b = 14$
 $c = \sqrt{245}$ or $7\sqrt{5}$; it is not a natural number.