\qquad DATE \qquad
\qquad

1-3 Skills Practice
 Solving Equations

Write an algebraic expression to represent each verbal expression.

1. 4 times a number, increased by 7

$$
4 n+7
$$

3. 6 times the sum of a number and 5

$$
6(n+5)
$$

2. 8 less than 5 times a number

$$
5 n-8
$$

4. the product of 3 and a number, divided by 9

$$
\frac{3 n}{9}
$$

5.3 times the difference of 4 and a number $3(4-n)$
6. the product of -11 and the square of a number $-11 n^{2}$

Write a verbal sentence to represent each equation. 7-10. Sample answers are given.
7. $n-8=16$
The difference of a number and 8 is 16.
9. $b+3=b^{2}$

Three added to a number is the square of the number.
8. $8+3 x=5$

The sum of 8 and 3 times a
number is 5 .
10. $\frac{y}{3}=2-2 y$

A number divided by 3 is the difference of 2 and twice the number.

Name the property illustrated by each statement.
11. If $a=0.5 b$, and $0.5 b=10$, then $a=10$.
Transitive (=)
12. If $d+1=f$, then $d=f-1$.
Subtraction ($=$)
13. If $-7 x=14$, then $14=-7 x$.

Symmetric (=)
14. If $(8+7) r=30$, then $15 r=30$.
Substitution (=)

Solve each equation. Check your solution.
15. $4 m+2=184$
16. $x+4=5 x+2 \quad \frac{1}{2}$
17. $3 t=2 t+5 \quad 5$
18. $-3 b+7=-15+2 b \quad \frac{22}{5}$
19. $-5 x=3 x-24 \quad 3$
20. $4 v+20-6=345$
21. $a-\frac{2 a}{5}=3 \quad 5$
22. $2.2 n+0.8 n+5=4 n \quad 5$

Solve each equation or formula for the specified variable.
23. $I=p r t$, for $p \quad p=\frac{I}{r t}$
24. $y=\frac{1}{4} x-12$, for $x \quad x=4 y+48$
25. $A=\frac{x+y}{2}$, for $y \quad y=2 A-x$
26. $A=2 \pi r^{2}+2 \pi r h$, for $h \quad h=\frac{A-2 \pi r^{2}}{2 \pi r}$
\qquad DATE \qquad
\qquad

1-3 Word Problem Practice Solving Equations

1. AGES Robert's father is 5 years older than 3 times Robert's age. Let Robert's age be denoted by R and let Robert's father's age be denoted by F. Write an equation that relates Robert's age and his father's age. $F=3 R+5$.
2. SAVINGS Jason started with d dollars in his piggy bank. One week later, Jason doubled the amount in his piggy bank. Another week later, Jason was able to add $\$ 20$ to his piggy bank. At this point, the piggy bank had $\$ 50$ in it. What is d ?
3. DOMINOES Nancy is setting up a train of dominos from the front entrance straight down the hall to the kitchen entrance. The thickness of each domino is t. Nancy places the dominoes so that the space separating consecutive dominoes is $3 t$. The total distance that N dominoes takes up is given by $d=t(4 N+1)$.

a. Nancy measures her dominoes and finds that $t=1$ centimeter. She measures the distance of her hallway and finds that $d=321$ centimeters. Rewrite the equation that relates d, t, and N with the given values substituted for t and d.
$321=4 N+1$
b. How many dominoes did Nancy have in her hallway?
80 dominoes
