\qquad
\qquad
\qquad

2-2 Skills Practice
 Linear Relations and Functions

State whether each function is a linear function. Explain.

1. $y=3 x$
2. $y=-2+5 x$
3. $2 x+y=10$
4. $f(x)=4 x^{2}$
5. $-\frac{3}{x}+y=15$
6. $x=y+8$
7. $g(x)=8$
8. $h(x)=\sqrt{x}+3$

Write each equation in standard form. Identify $\boldsymbol{A}, \boldsymbol{B}$, and \boldsymbol{C}.
9. $y=x$
10. $y=5 x+1$
11. $2 x=4-7 y$
12. $3 x=-2 y-2$
13. $5 y-9=0$
14. $-6 y+14=8 x$

Find the x-intercept and the y-intercept of the graph of each equation. Then graph the equation using the intercepts.
15.
$y=3 x-6$

17. $x+y=5$

16. $y=-2 x$

18. $2 x+5 y=10$

\qquad DATE \qquad
\qquad

2-2 Word Problem Practice Linear Relations and Functions

1. WORK RATE The linear equation $n=10 t$ describes n, the number of origami boxes that Holly can fold in t hours. How many boxes can Holly fold in 3 hours?
2. BASKETBALL Tony tossed a basketball. Below is a graph showing the height of the basketball as a function of time. Is this the graph of a linear function? Explain.

3. PROFIT Paul charges people $\$ 25$ to test the air quality in their homes. The device he uses to test air quality cost him $\$ 500$. Write an equation that describes Paul's net profit as a function of the number of clients he gets. How many clients does he need to break even?
4. RAMP A ramp is described by the equation $5 x+7 y=$ 35 . What is the area of the shaded region?

5. SWIMMING POOL A swimming pool is shaped as shown below. The total perimeter is 500 feet.

a. Write an equation that relates x and y.
b. Write the linear equation from part \mathbf{a} in standard form.
c. Graph the equation.

d. Olympic swimming pools are 164 feet long. If this pool is an Olympic pool, what is the value of y ?
