Simplify.

1. $\left(5 x^{2}+3 x-7\right)-\left(3 x^{2}-x+4\right)$

$$
\begin{aligned}
& \text { SOLUTION: } \\
& \begin{array}{l}
\left(5 x^{2}+3 x-7\right)-\left(3 x^{2}-x+4\right) \\
=5 x^{2}-3 x^{2}+3 x+x-7-4 \\
=2 x^{2}+4 x-11
\end{array}
\end{aligned}
$$

ANSWER:
$2 x^{2}+4 x-11$
2. $\left(2 y^{2}-4 y-5\right)+\left(3 y^{2}-2 y+1\right)$

SOLUTION:
$\left(2 y^{2}-4 y-5\right)+\left(3 y^{2}-2 y+1\right)$
$=2 y^{2}+3 y^{2}-4 y-2 y-5+1$
$=5 y^{2}-6 y-4$
ANSWER:
$5 y^{2}-6 y-4$
3. $2 c d(3 c-4 d)+4 d(c+2 d)$

SOLUTION:
Distribute.

$$
\begin{aligned}
& 2 c d(3 c-4 d)+4 d(c+2 d) \\
& =6 c^{2} d-8 c d^{2}+4 c d+8 d^{2}
\end{aligned}
$$

There are no like terms, so the polynomial is simplified.

ANSWER:

$$
6 c^{2} d-8 c d^{2}+4 c d+8 d^{2}
$$

4. $(r-s)(r+s)(3 r-2 s)$

$$
\begin{aligned}
& \text { SOLUTION: } \\
& (r-s)(r+s)(3 r-2 s) \\
& =\left(r^{2}-r s+r s-s^{2}\right)(3 r-2 s) \\
& =\left(r^{2}-s^{2}\right)(3 r-2 s) \\
& =3 r^{3}-2 r^{2} s-3 r s^{2}+2 s^{3}
\end{aligned}
$$

ANSWER:

$$
3 r^{3}-2 r^{2} s-3 r s^{2}+2 s^{3}
$$

$$
\begin{aligned}
& \text { Simplify. } \\
& \text { 5. } \frac{4 x^{3} y^{4}-10 x y^{5}}{2 x y} \\
& \text { SOLUTION: } \\
& \frac{4 x^{3} y^{4}-10 x y^{5}}{2 x y}=\frac{4 x^{3} y^{4}}{2 x y}-\frac{10 x y^{5}}{2 x y} \\
& =\frac{4}{2} x^{3-1} y^{4-1}-\frac{10}{2} x^{1-1} y^{5-1} \\
& =2 x^{2} y^{3}-5 y^{4}
\end{aligned}
$$

ANSWER:
$2 x^{2} y^{3}-5 y^{4}$
6. $\left(x^{3}+4 x^{2}-4 x-7\right) \div(x+1)$

SOLUTION:

$$
\begin{aligned}
& x+1 \begin{array}{r}
x^{2}+3 x-7 \\
\frac{(-)\left(x^{3}+x^{2}\right)}{x^{3}+4 x^{2}-4 x-7} \\
\frac{3 x^{2}-4 x}{} \\
\frac{(-)\left(3 x^{2}+3 x\right)}{-7 x-7} \\
\frac{(-)(-7 x-7)}{0}
\end{array}
\end{aligned}
$$

ANSWER:

$x^{2}+3 x-7$

Find $\boldsymbol{p}(-2)$ and $\boldsymbol{p}(4)$ for each function.
8. $p(x)=-2 x^{2}+5 x-3$

SOLUTION:

$$
\begin{aligned}
p(x) & =-2 x^{2}+5 x-3 \\
p(-2) & =-2(-2)^{2}+5(-2)-3 \\
& =-2(4)-10-3 \\
& =-8-13 \\
& =-21
\end{aligned}
$$

$$
p(x)=-2 x^{2}+5 x-3
$$

$$
p(4)=-2(4)^{2}+5(4)-3
$$

$$
=-2(16)+20-3
$$

$$
=-32+17
$$

$$
=-15
$$

ANSWER:
$-21,-15$

$$
\text { 9. } p(x)=-3 x^{3}-x^{2}+2 x-8
$$

SOLUTION:

$$
\begin{aligned}
p(x) & =-3 x^{3}-x^{2}+2 x-8 \\
p(-2) & =-3(-2)^{3}-(-2)^{2}+2(-2)-8 \\
& =-3(-8)-4-4-8 \\
& =24-16 \\
& =8
\end{aligned}
$$

$$
p(x)=-3 x^{3}-x^{2}+2 x-8
$$

$$
p(4)=-3(4)^{3}-(4)^{2}+2(4)-8
$$

$$
=-3(64)-16+8-8
$$

$$
=-192-16
$$

$$
=-208
$$

ANSWER:

8, -208
10. $p(x)=x^{4}-5 x^{3}+4 x+6$

SOLUTION:

$$
\begin{aligned}
p(x) & =x^{4}-5 x^{3}+4 x+6 \\
p(-2) & =(-2)^{4}-5(-2)^{3}+4(-2)+6 \\
& =16-5(-8)-8+6 \\
& =16+40-2 \\
& =54 \\
p(x)= & x^{4}-5 x^{3}+4 x+6 \\
p(4) & =(4)^{4}-5(4)^{3}+4(4)+6 \\
& =256-5(64)+16+6 \\
& =256-320+22 \\
& =-42
\end{aligned}
$$

ANSWER:
54, -42

Factor completely. If the polynomial is not factorable, writeprime. 12. $6 x^{4}-5 y^{7}$

SOLUTION:

$6 x^{4}$ and $5 y^{7}$ are not perfect cubes or perfect squares.
There are also no common factors between these two terms.
Therefore, the polynomial is prime.

ANSWER:
prime
$13.27 a^{3}-125 d^{3}$
SOLUTION:

$$
\begin{aligned}
27 a^{3}-125 d^{3} & =(3 a)^{3}-(5 d)^{3} \\
& =(3 a-5 d)\left[(3 a)^{2}+(3 a)(5 d)+(5 d)^{2}\right] \\
& =(3 a-5 d)\left(9 a^{2}+15 a d+25 d^{2}\right)
\end{aligned}
$$

ANSWER:

$$
(3 a-5 d)\left(9 a^{2}+15 a d+25 d^{2}\right)
$$

$$
\begin{aligned}
& \text { 14. } 2 a x^{2}-3 b x^{2}+c x^{2}-2 a y^{2}+3 b y^{2}-c y^{2} \\
& \text { SOLUTION: } \\
& 2 a x^{2}-3 b x^{2}+c x^{2}-2 a y^{2}+3 b y^{2}-c y^{2} \\
& =2 a x^{2}-2 a y^{2}-3 b x^{2}+3 b y^{2}+c x^{2}-c y^{2} \\
& =2 a\left(x^{2}-y^{2}\right)-3 b\left(x^{2}-y^{2}\right)+c\left(x^{2}-y^{2}\right) \\
& =\left(x^{2}-y^{2}\right)(2 a-3 b+c) \\
& =(x+y)(x-y)(2 a-3 b+c)
\end{aligned}
$$

ANSWER:

$$
(x-y)(x+y)(2 a-3 b+c)
$$

Given a polynomial and one of its factors, find the remaining factors of the polynomial.
15. $x^{3}-2 x^{2}-5 x+6 ; x-1$

SOLUTION:

Use synthetic division.

$1+$	1	-2	-5	6
		1	-1	-6
1	-1	-6	0	

Factor the remaining quadratic.

$$
x^{2}-x-6=(x-3)(x+2)
$$

ANSWER:
$(x+2)(x-3)$
16. $2 x^{3}-x^{2}-25 x-12 ; x+3$

SOLUTION:

Use synthetic division.

-3	2	-1	-25	-12
		-6	21	12
	2	-7	-4	0

Factor the remaining quadratic.

$$
\begin{aligned}
2 x^{2}-7 x-4 & =2 x^{2}-8 x+x-4 \\
& =2 x(x-4)+1(x-4) \\
& =(2 x+1)(x-4)
\end{aligned}
$$

ANSWER:
$(2 x+1)(x-4)$
Find all the zeros of each function.
18. $f(x)=x^{3}-4 x^{2}-7 x+10$

SOLUTION:

First, determine the total number of zeros.

$$
f(x)=x^{3}-4 x^{2}-7 x+10
$$

There are 2 sign changes for the coefficients of $f(x)$, so the function has 0 or 2 positive real zeros.

$$
\begin{aligned}
f(-x) & =(-x)^{3}-4(-x)^{2}-7(-x)+10 \\
& =-x^{3}-4 x^{2}+7 x+10
\end{aligned}
$$

There is 1 sign change for the coefficients of $f(-x)$, so $f(x)$ has 1 negative real zero.

Thus, $f(x)$ has 3 real zeros or 1 real zero and 2 imaginary zeros.
The possible real zeros are $\pm 1, \pm 2, \pm 5$, and ± 10.
Use synthetic substitution to evaluate $f(x)$ for real values of x.

$1+$	1	-4	-7	10
		1	-3	-10
	1	-3	-10	10

Factor the remaining quadratic.
$x^{2}-3 x-10=(x-5)(x+2)$
The function has zeros at 1,5 , and -2 .
ANSWER:
-2, 1, 5
19. $f(x)=x^{4}-8 x^{2}-9$

SOLUTION:

First, determine the total number of zeros.
$f(x)=x^{4}-8 x^{2}-9$
There is one sign change for the coefficients of $f(x)$, so the function has 1 positive real zero.

$$
\begin{aligned}
f(-x) & =(-x)^{4}-8(-x)^{2}-9 \\
& =x^{4}-8 x^{2}-9
\end{aligned}
$$

There is 1 sign change for the coefficients of $f(-x), \operatorname{so} f(x)$ has 1 negative real zero.

Thus, $f(x)$ has 2 real zeros and 2 imaginary zeros.
The possible real zeros are $\pm 1, \pm 3$, and ± 9.
Use synthetic substitution to evaluate $f(x)$ for real values of x.

3	1	0	-8	0	-9
		3	9	3	9
	1	3	1	3	10
-3	1	3	1	3	
		-3	0	-3	
	1	0	1	10	

The remaining quadratic cannot be factored. Find the other zeros using the Quadratic formula.

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{0 \pm \sqrt{(0)^{2}-4(1)(1)}}{2(1)} \\
& =\frac{ \pm \sqrt{-4}}{2} \\
& =\frac{ \pm 2 i}{2} \\
& = \pm i
\end{aligned}
$$

The function has zeros at $\boldsymbol{i},-\boldsymbol{i}, 3$, and -3 .
ANSWER:
$-3,3, \boldsymbol{i},-\boldsymbol{i}$
25. Refer to the graph below. Find all the zeros of $f(x)=x^{3}-5 x^{2}-12 x+36$.

SOLUTION:

The graph appears to cross the x-axis at $-3,2$, and 6 .
Test these zeros with synthetic division.

2	1	-5	-12	36
		2	-6	-36
1		-3	-18	10

Factor the remaining quadratic.
$x^{2}-3 x-18=(x-6)(x+3)$
The zeros are 2,6 , and -3 .

ANSWER:
-3, 2, 6

