Simplify. 1. $(5x^2 + 3x - 7) - (3x^2 - x + 4)$ SOLUTION: $(5x^2 + 3x - 7) - (3x^2 - x + 4)$ $= 5x^2 - 3x^2 + 3x + x - 7 - 4$ $= 2x^2 + 4x - 11$

ANSWER:

 $2x^2 + 4x - 11$

$$2 \cdot \left(2y^2 - 4y - 5\right) + \left(3y^2 - 2y + 1\right)$$

SOLUTION:
$$(2y^2 - 4y - 5) + (3y^2 - 2y + 1)$$

$$= 2y^{2} + 3y^{2} - 4y - 2y - 5 + 1$$
$$= 5y^{2} - 6y - 4$$

ANSWER:

5y² − 6y − 4

3.
$$2cd(3c-4d) + 4d(c+2d)$$

SOLUTION:
Distribute.
 $2cd(3c-4d) + 4d(c+2d)$

$$= 6c^2d - 8cd^2 + 4cd + 8d^2$$

There are no like terms, so the polynomial is simplified.

ANSWER:

$$6c^{2}d - 8cd^{2} + 4cd + 8d^{2}$$

4. $(r-s)(r+s)(3r-2s)$

$$(r-s)(r+s)(3r-2s)$$

= $(r^2 - rs + rs - s^2)(3r - 2s)$
= $(r^2 - s^2)(3r - 2s)$
= $3r^3 - 2r^2s - 3rs^2 + 2s^3$

ANSWER: $3r^3 - 2r^2s - 3rs^2 + 2s^3$ Simplify. 5. $\frac{4x^{3}y^{4} - 10xy^{5}}{2xy}$ SOLUTION: $\frac{4x^{3}y^{4} - 10xy^{5}}{2xy} = \frac{4x^{3}y^{4}}{2xy} - \frac{10xy^{5}}{2xy}$ $= \frac{4}{2}x^{3-1}y^{4-1} - \frac{10}{2}x^{1-1}y^{5-1}$ $= 2x^{2}y^{3} - 5y^{4}$

ANSWER:

 $2x^2y^3 - 5y^4$

$$_{6.}\left(x^{3}+4x^{2}-4x-7\right)\div(x+1)$$

SOLUTION:

$$\begin{array}{r} x^{2} + 3x - 7 \\
x+1 \overline{\smash{\big)} x^{3} + 4x^{2} - 4x - 7} \\
\underline{(-)(x^{3} + x^{2})} \\
3x^{2} - 4x \\
\underline{(-)(3x^{2} + 3x)} \\
-7x - 7 \\
\underline{(-)(-7x - 7)} \\
0
\end{array}$$

ANSWER: $x^2 + 3x - 7$

Find
$$p(-2)$$
 and $p(4)$ for each function.
8. $p(x) = -2x^2 + 5x - 3$
SOLUTION:
 $p(x) = -2x^2 + 5x - 3$
 $p(-2) = -2(-2)^2 + 5(-2) - 3$
 $= -2(4) - 10 - 3$
 $= -8 - 13$
 $= -21$
 $p(x) = -2x^2 + 5x - 3$
 $p(4) = -2(4)^2 + 5(4) - 3$
 $= -2(16) + 20 - 3$
 $= -32 + 17$
 $= -15$

ANSWER:

-21, -15

9. $p(x) = -3x^3 - x^2 + 2x - 8$ SOLUTION: $p(x) = -3x^3 - x^2 + 2x - 8$ $p(-2) = -3(-2)^3 - (-2)^2 + 2(-2) - 8$ = -3(-8) - 4 - 4 - 8 = 24 - 16 = 8 $p(x) = -3x^3 - x^2 + 2x - 8$ $p(4) = -3(4)^3 - (4)^2 + 2(4) - 8$ = -3(64) - 16 + 8 - 8 = -192 - 16 = -208ANSWER: 10. $p(x) = x^4 - 5x^3 + 4x + 6$ SOLUTION: $p(x) = x^4 - 5x^3 + 4x + 6$ $p(-2) = (-2)^4 - 5(-2)^3 + 4(-2) + 6$ = 16 - 5(-8) - 8 + 6 = 16 + 40 - 2 = 54 $p(x) = x^4 - 5x^3 + 4x + 6$ $p(4) = (4)^4 - 5(4)^3 + 4(4) + 6$ = 256 - 5(64) + 16 + 6 = 256 - 320 + 22= -42

8, -208

eSolutions Manual - Powered by Cognero

ANSWER:

54, -42

Factor completely. If the polynomial is not factorable, write prime . 12. $6x^4 - 5y^7$

SOLUTION:

 $6x^4$ and $5y^7$ are not perfect cubes or perfect squares.

There are also no common factors between these two terms.

Therefore, the polynomial is prime.

ANSWER:

prime

 $13.27a^3 - 125d^3$

SOLUTION:

$$27a^{3} - 125d^{3} = (3a)^{3} - (5d)^{3}$$

= $(3a - 5d)[(3a)^{2} + (3a)(5d) + (5d)^{2}]$
= $(3a - 5d)(9a^{2} + 15ad + 25d^{2})$

ANSWER:

 $(3a - 5d)(9a^2 + 15ad + 25d^2)$

$$14. 2ax^{2} - 3bx^{2} + cx^{2} - 2ay^{2} + 3by^{2} - cy^{2}$$

SOLUTION:

$$2ax^{2} - 3bx^{2} + cx^{2} - 2ay^{2} + 3by^{2} - cy^{2}$$

$$= 2ax^{2} - 2ay^{2} - 3bx^{2} + 3by^{2} + cx^{2} - cy^{2}$$

$$= 2a(x^{2} - y^{2}) - 3b(x^{2} - y^{2}) + c(x^{2} - y^{2})$$

$$= (x^{2} - y^{2})(2a - 3b + c)$$

$$= (x + y)(x - y)(2a - 3b + c)$$

ANSWER: (x-y)(x+y)(2a-3b+c)

Given a polynomial and one of its factors, find the remaining factors of the polynomial.

 $15. x^3 - 2x^2 - 5x + 6; x - 1$

SOLUTION:

Use synthetic division.

_1		1	-2	-5	6	
			1	-1	-6	
	1		-1	-6	0	

Factor the remaining quadratic.

$$x^2 - x - 6 = (x - 3)(x + 2)$$

ANSWER:

(x+2)(x-3)

16. $2x^3 - x^2 - 25x - 12; x + 3$ SOLUTION:

Use synthetic division.

3	2	-1	-25	-12
		-6	21	12
	2	-7	-4	0

Factor the remaining quadratic.

$$2x^{2} - 7x - 4 = 2x^{2} - 8x + x - 4$$

= 2x(x - 4) + 1(x - 4)
= (2x + 1)(x - 4)

ANSWER: (2x+1)(x-4)

Find all the zeros of each function. 18. $f(x) = x^3 - 4x^2 - 7x + 10$

SOLUTION:

First, determine the total number of zeros.

$$f(x) = x^3 - 4x^2 - 7x + 10$$

There are 2 sign changes for the coefficients of f(x), so the function has 0 or 2 positive real zeros.

$$f(-x) = (-x)^3 - 4(-x)^2 - 7(-x) + 10$$
$$= -x^3 - 4x^2 + 7x + 10$$

There is 1 sign change for the coefficients of f(-x), so f(x) has 1 negative real zero.

Thus, f(x) has 3 real zeros or 1 real zero and 2 imaginary zeros.

The possible real zeros are $\pm 1, \pm 2, \pm 5$, and ± 10 .

Use synthetic substitution to evaluate f(x) for real values of x.

Factor the remaining quadratic.

$$x^2 - 3x - 10 = (x - 5)(x + 2)$$

The function has zeros at 1, 5, and -2.

ANSWER:

-2, 1, 5

$$19. f(x) = x^4 - 8x^2 - 9$$

SOLUTION:

First, determine the total number of zeros.

$$f(x) = x^4 - 8x^2 - 9$$

There is one sign change for the coefficients of f(x), so the function has 1 positive real zero.

$$f(-x) = (-x)^4 - 8(-x)^2 - 9$$
$$= x^4 - 8x^2 - 9$$

There is 1 sign change for the coefficients of f(-x), so f(x) has 1 negative real zero.

Thus, f(x) has 2 real zeros and 2 imaginary zeros.

The possible real zeros are $\pm 1, \pm 3$, and ± 9 .

Use synthetic substitution to evaluate f(x) for real values of x.

3	1	0	-8	C) -9
		3	9	3	9
	1	3	1	3	0
3	J	1	3	1	3
			-3	0	-3
		1	0	1	ю

The remaining quadratic cannot be factored. Find the other zeros using the Quadratic formula.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$= \frac{0 \pm \sqrt{(0)^2 - 4(1)(1)}}{2(1)}$$
$$= \frac{\pm \sqrt{-4}}{2}$$
$$= \frac{\pm 2i}{2}$$
$$= \pm i$$

eSolutions Manual - Powered by Cognero

The function has zeros at i, -i, 3, and -3.

ANSWER:

−3, 3, *i*, −*i*

25. Refer to the graph below. Find all the zeros of $f(x) = x^3 - 5x^2 - 12x + 36$.

SOLUTION: The graph appears to cross the *x*-axis at -3, 2, and 6.

Test these zeros with synthetic division.

Factor the remaining quadratic.

$$x^2 - 3x - 18 = (x - 6)(x + 3)$$

The zeros are 2, 6, and -3.

ANSWER: -3, 2, 6